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LElTER TO THE EDITOR 

Antiferromagnetic triangular Ising model: an exact 
calculation of P(A) 

T C Choy and D Sherrington 
Physics Department, Imperial College, London, SW7 2BZ, UK 

Received 23 February 1983 

Abstract. Using exact results for the nearest-neighbour two, four and six spin correlations, 
we have evaluated the local field probability distribution function P ( h )  for the (fully 
frustrated) triangular antiferromagnetic king lattice in its ground state. 

In this communication we present an exact evaluation of P ( h ) ,  the distribution of 
local molecular fields h, for a nearest-neighbour Ising antiferromagnet on a triangular 
net, a periodically frustrated (Toulouse 1977) system which does not order at any 
temperature (Wannier 1950, Houtappel 1950) in the absence of perturbations, but 
which can be made to order by a suitable small change of exchange parameters (Newel1 
1950) or by the application of a field (Schick et a1 1977) or, apparently, by dilution 
(Grest and Gab1 1979). 

The motivation for the investigation stems from observations of spin-glass studies. 
Computer experiments on spin-glass models with competing exchange sign have 
universally demonstrated a zero-field minimum in the distribution of local molecular 
fields in their ground or low-lying metastable states (see e.g. Sherrington 1975, 
reporting work with Kirkpatrick (unpublished elsewhere), Walker and Walstedt 1977, 
1980, Binder 1977, Palmer and Pond 1979, Bantilan and Palmer 1981). A similar 
minimum has been found in simulations of amorphous antiferromagnets (Khanna and 
Sherrington 1980, McLenaghan and Sherrington 1983). All these systems exhibit 
frustration and disorder. 

Among periodic systems those with no frustration have P(0)  = 0 in the ground 
state while those with no interactions have P(0)  = 1. Provided they are above the 
lower critical dimension for stability against fluctuations, the former of these order, 
the latter do not. It seems interesting, therefore, to evaluate the P ( h )  distribution for 
a system which is intermediate, yet soluble, particularly one known to lie just on the 
border between ordering and non-ordering. We find P ( h )  for the triangular Ising 
model to be almost flat around h = 0 with a slight zero-field maximum. 

Our method of solution makes use of two, four and six spin correlation functions 
first obtained by Stephenson (1964). For orientation we first present a brief review 
of the method of solution for these quantities. 

While there exist numerous rederivations of Onsager's (1944) solution for the 
two-dimensional Ising model, the version that is most fruitful for the investigation of 
spin correlations is due to Kasteleyn (1963), generalised to the triangular lattice by 
Stephenson (1964); it employs Pfaffians. Since we shall need these results in our 
calculation, a quick review seems appropriate. 
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Considering the case of equal bonds, the partition function for a nearest-neighbour 
Ising model on a lattice of N spins is given by 

where U = tanh K, K = J/kT,  the summation is over all spin configurations, while the 
product is over nearest-neighbour spins. In this form the problem is naturally cast as 
the counting of dimer configurations on a lattice (see Kac and Ward 1952, Potts 1952): 

2, = 2, cosh3"K( 1 + 1 urcs* 'p ( r ,  s, t ) )  
r,s,r 

where p ( r ,  s, t )  is the number of polygons with an even number of lines at each vertex 
that can be constructed with r horizontal, s vertical and t diagonal nearest-neighbour 
links for a triangular lattice; it is convenient to use a square representation of the 
triangular lattice as shown in figure 1, with equal interactions horizontally, vertically 
and along the exhibited diagonals. The final answer is given by 

(3 1 
where A is an antisymmetric matrix whose determinant is the square of the Pfaffian. 
This result is obtained only after the use of a topological theorem first proved by 
Kasteleyn which now bears his name (see Stephenson 1964). By appropriate use of 
some identities for the Ising spins, the calculation of spin correlations proceeds along 
similar lines after casting the problem as a perturbed partition function with a different 
weight l / u  at the relevant sites. 

2, = 2, cosh3, K Pf A 

Figure 1. Nearest-neighbour spin correlations on the triangular k ing  model. 

The result for all even-order correlations can also be expressed as Pfaffians of 
appropriate antisymmetric matrices. We shall leave the details at this stage but merely 
quote the results which we shall use. The reader can pursue this from Stephenson 
(1964) or Montroll e? a1 (1963). Labelling the spins about the origin as in figure 1, 
the following correlations, which are all expressed as Pfaffians with elements given 
by elliptic integrals, can be evaluated in closed form for the ground state in the 
interesting case J < 0: 

s o 1  = (g0,lfl l . l)  = -+, s 1 4  = ( g - l - l ~ l , l )  = ($-3/7f 1 2 )*  

s13  = ( ~ - l , O ~ l , l )  = ( $ + 2 J i / 7 f ) ,  

s 1 2 3 4 =  ( ~ 1 , 0 ~ 1 , 1 ~ 0 , 1 ( + - 1 , 0 ) =  (-f+4J3/377 -3/7f2!, 
- 
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P ( h ) = ( S ( h +  j = 1  i .)) 
where h = H / J  = 0 , 2 , 4 , 6  and the sum is over the six-membered ring which is nearest 
neighbour to Using an exponential integral representation of the Kronecker 
delta, this is 

6 
* dB eihe cos6 8( n (1 +ia i  tan 8)). 

j = 1  

Since odd moments vanish by symmetry and the spontaneous magnetisation is zero, 
we are left with the expansion 

lii) 

1 "  
2rr --Ti 

P ( h )  = - 1 de elhe cos6 8 1 -tanZ 8 1 (ala,) 

(7) 

Finally we have 

Sa = 6S01+ 6S13 + W14, Sp = 6S1234 + 6S1235 + 3S124.5, s y  = s1234.56, 

and Io, 12, 14, I6 are all elementary integrals. The result after normalisation is given 
in table 1, with the corresponding results for T = 00 for comparison. 

Table 1. 

P ( h  1 

h Ground state T = o ;  

0 0.2630865 0.312 500 
1 2  0.2348927 0.234 375 
*4 0.1227224 0.093 750 
1 6  0.0108414 0.015 625 

We have evaluated exactly the distribution of local molecular fields in the ground 
state of a uniform nearest-neighbour Ising antiferromagnet on a triangular lattice. 
The results are given in table 1; they show a slight maximum at h = 0 but with an 
almost flat distribution around. Since this model is known to be just non-ordering, 
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and in view of the situation for other systems mentioned earlier, it is tempting to 
suggest that a zero-field minimum in P ( h )  is indicative of a system with a tendency 
to order, albeit critical fluctuations might prevent this in a true thermodynamic sense. 

Extensions to other fully frustrated systems and to the effect of perturbations on 
the triangular Ising antiferromagnet are under consideration. 

It is a pleasure to thank N Rivier for stimulating discussions in the course of this 
work. Financial assistance from the SERC is gratefully acknowledged. 
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